Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(1): 195-202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864777

RESUMO

To examine the potential for the autogenic ecosystem engineers, crustose coralline algae (CCA), to serve as seed banks or refugia for life stages of other species, it is critical to develop sampling protocols that reflect the diversity of life present. In this pilot study on two shallow water species of CCA collected from Raoul Island (Kermadec Islands; Rangitahua) New Zealand, we investigated two preservation methods (ethanol vs. silica gel), sampled inner and outer regions of the crusts, and used DNA metabarcoding and seven genes/gene regions (16S rRNA, 18S rRNA, 23S rRNA, cox1, rbcL, and tufA genes and the ITS rRNA region) to develop a protocol for taxa identification. The results revealed immense diversity, with typically more taxa identified within the inner layers than the outer layers. As highlighted in other metabarcoding studies and in earlier work on rhodoliths (nodose coralline algae), reference databases are incomplete, and to some extent, the use of multiple markers mitigates this issue. Specifically, the 23S rRNA and rbcL genes are currently more suitable for identifying algae, while the cox1 gene fares better at capturing the diversity present inclusive of algae. Further investigation of these autogenic ecosystem engineers that likely act as marine seed banks is needed.


Assuntos
Ecossistema , Rodófitas , Rodófitas/genética , RNA Ribossômico 16S , Código de Barras de DNA Taxonômico , Projetos Piloto , RNA Ribossômico 23S , Banco de Sementes
2.
Sci Rep ; 12(1): 16783, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202873

RESUMO

The emergence of high resolution population genetic techniques, such as genotyping-by-sequencing (GBS), in combination with recent advances in particle modelling of larval dispersal in marine organisms, can deliver powerful new insights to support fisheries conservation and management. In this study, we used this combination to investigate the population connectivity of a commercial deep sea lobster species, the New Zealand scampi, Metanephrops challengeri, which ranges across a vast area of seafloor around New Zealand. This species has limited dispersal capabilities, including larvae with weak swimming abilities and short pelagic duration, while the reptant juvenile/adult stages of the lifecycle are obligate burrow dwellers with limited home ranges. Ninety-one individuals, collected from five scampi fishery management areas around New Zealand, were genotyped using GBS. Using 983 haplotypic genomic loci, three genetically distinct groups were identified: eastern, southern and western. These groups showed significant genetic differentiation with clear source-sink dynamics. The direction of gene flow inferred from the genomic data largely reflected the hydrodynamic particle modelling of ocean current flow around New Zealand. The modelled dispersal during pelagic larval phase highlights the strong connectivity among eastern sampling locations and explains the low genetic differentiation detected among these sampled areas. Our results highlight the value of using a transdisciplinary approach in the inference of connectivity among populations for informing conservation and fishery management.


Assuntos
Fluxo Gênico , Nephropidae , Animais , Pesqueiros , Genética Populacional , Haplótipos , Humanos , Larva/genética
3.
PeerJ ; 6: e5641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258728

RESUMO

Deep sea lobsters are highly valued for seafood and provide the basis of important commercial fisheries in many parts of the world. Despite their economic significance, relatively little is known about their natural diets. Microscopic analyses of foregut content in some species have suffered from low taxonomic resolution, with many of the dietary items difficult to reliably identify as their tissue is easily digested. DNA metabarcoding has the potential to provide greater taxonomic resolution of the diet of the New Zealand scampi (Metanephrops challengeri) through the identification of gut contents, but a number of methodological concerns need to be overcome first to ensure optimum DNA metabarcoding results. In this study, a range of methodological parameters were tested to determine the optimum protocols for DNA metabarcoding, and provide a first view of M. challengeri diet. Several PCR protocols were tested, using two universal primer pairs targeting the 18S rRNA and COI genes, on DNA extracted from both frozen and ethanol preserved samples for both foregut and hindgut digesta. The selection of appropriate DNA polymerases, buffers and methods for reducing PCR inhibitors (including the use of BSA) were found to be critical. Amplification from frozen or ethanol preserved gut contents appeared similarly dependable. The COI gene was found to be more effective than 18S rRNA gene for identifying large eukaryotic taxa from the digesta; however, it was less successfully amplified. The 18S rRNA gene was more easily amplified, but identified mostly smaller marine organisms such as plankton and parasites. This preliminary analysis of the diet of M. challengeri identified a range of species (13,541 reads identified as diet), which included the ghost shark (Hydrolagus novaezealandiae), silver warehou (Seriolella punctata), tall sea pen (Funiculina quadrangularis) and the salp (Ihlea racovitzai), suggesting that they have a varied diet, with a high reliance on scavenging a diverse range of pelagic and benthic species from the seafloor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...